Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 7(23)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36173685

RESUMEN

The LAMA5 gene encodes laminin α5, an indispensable component of glomerular basement membrane and other types of basement membrane. A homozygous pathological variant in LAMA5 is known to cause a systemic developmental syndrome including glomerulopathy. However, the roles of heterozygous LAMA5 gene variants in human renal and systemic diseases have remained unclear. We performed whole-exome sequencing analyses of a family with slowly progressive nephropathy associated with hereditary focal segmental glomerulosclerosis, and we identified what we believe to be a novel probable pathogenic variant of LAMA5, NP_005551.3:p.Val3687Met. In vitro analyses revealed cell type-dependent changes in secretion of variant laminin α5 laminin globular 4-5 (LG4-5) domain. Heterozygous and homozygous knockin mice with a corresponding variant of human LAMA5, p.Val3687Met, developed focal segmental glomerulosclerosis-like pathology with reduced laminin α5 and increased glomerular vinculin levels, which suggested that impaired cell adhesion may underlie this glomerulopathy. We also identified pulmonary defects such as bronchial deformity and alveolar dilation. Reexaminations of the family revealed phenotypes compatible with reduced laminin α5 and increased vinculin levels in affected tissues. Thus, the heterozygous p.Val3687Met variant may cause a new syndromic nephropathy with focal segmental glomerulosclerosis through possibly defective secretion of laminin α5. Enhanced vinculin may be a useful disease marker.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Animales , Humanos , Ratones , Glomeruloesclerosis Focal y Segmentaria/genética
3.
Hum Genet ; 140(2): 277-287, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32617796

RESUMEN

CRISPR-Cas9 are widely used for gene targeting in mice and rats. The non-homologous end-joining (NHEJ) repair pathway, which is dominant in zygotes, efficiently induces insertion or deletion (indel) mutations as gene knockouts at targeted sites, whereas gene knock-ins (KIs) via homology-directed repair (HDR) are difficult to generate. In this study, we used a double-stranded DNA (dsDNA) donor template with Cas9 and two single guide RNAs, one designed to cut the targeted genome sequences and the other to cut both the flanked genomic region and one homology arm of the dsDNA plasmid, which resulted in 20-33% KI efficiency among G0 pups. G0 KI mice carried NHEJ-dependent indel mutations at one targeting site that was designed at the intron region, and HDR-dependent precise KIs of the various donor cassettes spanning from 1 to 5 kbp, such as EGFP, mCherry, Cre, and genes of interest, at the other exon site. These findings indicate that this combinatorial method of NHEJ and HDR mediated by the CRISPR-Cas9 system facilitates the efficient and precise KIs of plasmid DNA cassettes in mice and rats.


Asunto(s)
Sistemas CRISPR-Cas/genética , Reparación del ADN por Unión de Extremidades/genética , Técnicas de Sustitución del Gen/métodos , Plásmidos/genética , Reparación del ADN por Recombinación/genética , Animales , ADN/genética , Exones/genética , Femenino , Edición Génica/métodos , Genoma/genética , Intrones/genética , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Ratas , Ratas Long-Evans , Ratas Wistar
4.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355142

RESUMEN

Rs671 in the aldehyde dehydrogenase 2 gene (ALDH2) is the cause of Asian alcohol flushing response after drinking. ALDH2 detoxifies endogenous aldehydes, which are the major source of DNA damage repaired by the Fanconi anemia pathway. Here, we show that the rs671 defective allele in combination with mutations in the alcohol dehydrogenase 5 gene, which encodes formaldehyde dehydrogenase (ADH5FDH ), causes a previously unidentified disorder, AMeD (aplastic anemia, mental retardation, and dwarfism) syndrome. Cellular studies revealed that a decrease in the formaldehyde tolerance underlies a loss of differentiation and proliferation capacity of hematopoietic stem cells. Moreover, Adh5-/-Aldh2 E506K/E506K double-deficient mice recapitulated key clinical features of AMeDS, showing short life span, dwarfism, and hematopoietic failure. Collectively, our results suggest that the combined deficiency of formaldehyde clearance mechanisms leads to the complex clinical features due to overload of formaldehyde-induced DNA damage, thereby saturation of DNA repair processes.

5.
Cell ; 180(6): 1228-1244.e24, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32142649

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.


Asunto(s)
Reparación del ADN/fisiología , ARN Polimerasa II/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Polimerasa II/genética , Ubiquitinación
6.
Genome Biol ; 20(1): 171, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31446895

RESUMEN

BACKGROUND: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method). RESULTS: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. CONCLUSION: We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.


Asunto(s)
Alelos , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Animales , Blastocisto/metabolismo , Análisis Factorial , Femenino , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones Noqueados , Microinyecciones , Análisis de Regresión , Reproducibilidad de los Resultados
7.
Exp Anim ; 62(2): 127-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23615307

RESUMEN

The murine norovirus (MNV), which belongs to the Caliciviridae family, is prevalent in laboratory mice. Since this virus affects macrophages and dendritic cells, infected mice are not suitable for immunological investigations, making it important to detect MNV infections accurately. When we tested RNA extracts derived from mouse feces for MNV detection using nested RT-PCR with a set of MNV-specific primers reported by Goto et al. (Exp. Anim. 58: 135-140, 2009), we found that these primers amplified not only an MNV-specific signal but also amplified a relatively weak signal with a size almost identical to that of the specific signal. Analysis of the nucleotide sequence of this amplified signal revealed that it was at least 98% identical to the exophosphatase gene of a commensal bacterium, Bacteroides vulgatus. Subsequent analysis showed that the signal amplified with a pair of nested primers was from DNA derived from B. vulgatus, which is sometimes present in SPF laboratory mouse feces, and the nested primers used were both partly homologous with the B. vulgatus nucleotide sequence. We thus designed a new set of nested RT-PCR primers that was not cross-reactive with the B. vulgatus genome. PCR products amplified by the newly designed primers were at least 89.3% identical to the MNV RNA polymerase gene in all cases. Our findings demonstrated that the primer set we designed was suitable for detecting an MNV-specific signal without cross-reacting with B. vulgatus DNA in mouse feces.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/virología , Cartilla de ADN , Heces/virología , Gastroenteritis/veterinaria , Gastroenteritis/virología , Norovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Enfermedades de los Roedores/diagnóstico , Enfermedades de los Roedores/virología , Animales , Bacteroides/enzimología , Bacteroides/genética , Infecciones por Caliciviridae/diagnóstico , ADN Bacteriano , ADN Viral/genética , ARN Polimerasas Dirigidas por ADN/genética , Femenino , Gastroenteritis/diagnóstico , Ratones , Ratones Endogámicos ICR , Norovirus/enzimología , Norovirus/genética
8.
Exp Anim ; 59(2): 261-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20484862

RESUMEN

Immunodeficient animals are in demand in current biomedical research, and they contribute to medical progress. In Pneumocystis infections, a specific histological diagnostic tool may be immunochemistry (IC). However, it was recently reported that the antibody (3F6) was not suitable for detecting Pneumocystis in rats. We purchased another antibody [PNC007] from a commercial source for IC. We could detect positive signals at identical locations with IC and Toluidine blue O in lungs of infected rats. These results corresponded to the results obtained with PCR. We should study the relationship between unexpected positive signals seen in IC and trophic forms in lungs of infected rats. We could clinically diagnose pneumonia caused by Pneumocystis carinii with the diagnostic method we developed.


Asunto(s)
Huésped Inmunocomprometido , Inmunohistoquímica/métodos , Pneumocystis carinii/aislamiento & purificación , Neumonía por Pneumocystis/diagnóstico , Animales , Anticuerpos Antifúngicos/inmunología , Femenino , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Pneumocystis carinii/inmunología , Neumonía por Pneumocystis/inmunología , Neumonía por Pneumocystis/microbiología , Ratas , Ratas Endogámicas F344 , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...